Modeling of Non-Spherical Droplet Dynamics

Abstract

A two-dimensional time-dependent computer code based on the modified Arbitrary Lagrangian Eulerian (ALE) technique, has been developed to simulate non-spherical droplet dynamics and evaporation under convective flows at real rocket combustion chamber conditions. The equations of mass, momentum, energy and species are simultaneously solved for both liquid and gas phases with an accurate dynamic interface tracking. The jump boundary conditions across the deforming droplet surface are obtained by applying the integral forms of conservation of mass, momentum, and energy. At each time step, the interface geometry and flow properties at the droplet surface are implicitly solved by satisfying the interface boundary conditions. A Lagrangian technique was developed to track the arbitrarily moving interface between the liquid droplet and the external gas. An elliptic grid generator is adopted to dynamically reconstruct grids both inside and outside the droplet surface. This code has been used to study droplet oscillation, droplet deformation/breakup, nonspherical droplet evaporation in both low and high pressure convective flows. This presentation briefly describes the numerical algorithm for modeling of the nonspherical droplet dynamics and demonstrates the representative simulation results of nonspherical droplet evaporation at low and high pressure convective flows. Potential applications of this code to rocket combustor design and performance predictions are discussed

    Similar works