Definition of exobiology experiments for future Mars missions

Abstract

During the past year we have concentrated on two objectives. The first objective is ongoing and is to define the experimental parameters that are necessary to conduct autonomously a mineralogical analysis of the Martian surface in situ using differential thermal analysis coupled with gas chromatography (DTA/GC). The rationale in support of this objective is that proper interpretation of the mineralogical data from the DTA/GC can be used to better describe the present and past environments of Mars, leading to a better assessment of the probability of life evolving on Mars. To meet these objectives we have analyzed a number of samples collected from nature using the DTA/GC. One of the more significant findings was that in samples of desert varnish we detected magnetite and maghemite that may serve as potential biomarkers applicable to DTA/GC analyses of Martian surface material during landed missions. The second objective follows from the first and is to better understand microbe-environment interactions by determining the response of microbes to changes in their environment, including extreme desiccation and solar UV-radiation. The rationale behind this is to develop hypotheses regarding what may have happened to life that may have arose on Mars, and microbial life that may get to the surface of Mars via spacecraft, or meteors from Earth. To accomplish this objective we have exposed microbes, collected from NaCl and gypsum-halite crystals, to the space environment aboard the ESA-German Biopan facility for 15 days. The most significant finding was that these microbes survived the exposure better than others

    Similar works