A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G

Abstract

A research program to study smoldering combustion with emphasis on the design of an experiment to be conducted in the space shuttle was conducted at the Department of Mechanical Engineering, University of California, Berkeley. The motivation of the research is the interest in smoldering both as a fundamental combustion problem and as a serious fire risk. Research conducted included theoretical and experimental studies that have brought considerable new information about smolder combustion, the effect that buoyancy has on the process, and specific information for the design of a space experiment. Experiments were conducted at normal gravity, in opposed and forward mode of propagation and in the upward and downward direction to determine the effect and range of influence of gravity on smolder. Experiments were also conducted in microgravity, in a drop tower and in parabolic aircraft flights, where the brief microgravity periods were used to analyze transient aspects of the problem. Significant progress was made on the study of one-dimensional smolder, particularly in the opposed-flow configuration. These studies provided enough information to design a small-scale space-based experiment that was successfully conducted in the Spacelab Glovebox in the June 1992 USML-1/STS-50 mission of the Space Shuttle Columbia

    Similar works