Millimeter-wave passive ultra-compact imaging technology for synthetic vision & mobile platforms

Abstract

Substantial technical progress was made on all of the three high-risk subsystems of this program. The subsystems include dielectric antenna, G-band receiver, and electro-optic image processor. Progress is approximately on-schedule for both the receiver and the electro-optic processor development, while greater than anticipated challenges have been discovered in the dielectric antenna development. Much of the information in this report was covered in greater detail in the One-Year Review Meeting held at TTC on 22 February 1996. The performance goals of the dielectric antenna project are: Scan Angle -- 20 deg. desired; Loss -- 6 dB end to end (3 dB average); Frequency -- 206-218 GHz (6% bandwidth); Beam width -- 0.25 deg.; and Length -- 12 inches. The scan angle requirement was chosen to satisfy the needs of aircraft pilots. This requirement, coupled with the presently limited bandwidth processors (1 GHz state-of-the-art and 12 GHz in development in this program) forces the antenna to be dielectric (high scan angle air-filled waveguide-based antennas would be too lossy and their performance would vary too much as a function of frequency). A high dielectric constant (e.g., 10) was initially chosen for the dielectric material. This choice lead to the following fabrication challenges: total thickness variation (TTV) tolerance is 1 micrometer; coupler spacing tolerance is 1 micrometer; width tolerance is larger, but unknown, and the surfaces must have mirror finish. Also of importance is the difficulty in obtaining raw materials that satisfy the overall length requirement of 12 inches while simultaneously satisfying the above specifications

    Similar works