Aerodynamic, unsteady, kinetic and heat loss effects on the dynamics and structure of weakly-burning flames

Abstract

The first objective of the program is to introduce the meritorious counterflow methodology in microgravity in order to quantify the steady and unsteady characteristics of weakly-burning premixed and diffusion flames for a wide variety of conditions including elevated pressures. Subsequently, through detailed modeling and comparisons with the experimental data, to provide physical insight into the elementary mechanisms controlling the flame response. The configuration offers good control over the parameters of interest and can be modelled closely. The knowledge which will be gained from the counterflow flames will be subsequently used to analyze near-limit phenomena related to other configurations by conducting detailed numerical simulations including multidimensional ones. Among the problems to be analyzed are the downward and upward propagation of near-limit flames in tubes and phenomena observed in spherical and cylindrical geometries

    Similar works