Space Environmental Effects on the Optical Properties of Selected Transparent Polymers

Abstract

Transparent polymer films are currently considered for use as solar concentrating lenses for spacecraft power and propulsion systems. These polymer films concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. Conversion efficiency is directly related to the polymer transmission. Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation focuses on the effects of ultraviolet and charged particle radiation on the transmission of selected transparent polymers. Multiple candidate polymer samples were exposed to near ultraviolet (NUV) radiation to screen the materials and select optimum materials for further study. All materials experienced transmission degradation of varying degree. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance of NUV. Teflon(Tm) FEP and Teflon(Tm) PFA were selected for further study. These materials were subjected to a combined charged particle dose equivalent to 5 years in a typical geosynchronous Earth orbit (GEO). Results from these NUV screening tests and the 5 year GEO equivalent dose are presented

    Similar works