Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

Abstract

Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller

    Similar works