Anisotropic structure of homogeneous turbulence subjected to uniform rotation

Abstract

Large-eddy simulation results are used to investigate the development of anisotropies and the possible transition towards a quasi two-dimensional state in rotating turbulence at high Reynolds number. The present study demonstrates the existence of two transitions that are identified by two Rossby numbers. The first transition marks the onset of anisotropic effects and corresponds to a macro Rossby number Ro(sup L) (based on a longitudinal integral length scale) near unity. A second transition can be defined in terms of a lower bound of micro-Rossby number Ro(sup w) also near unity (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) and corresponds to a continued development of anisotropy but with an increasing emergence of those indicators based on the pure two-dimensional component of the flow, e.g., integral length scales measured along the rotation axis. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the basic angular velocity vector with a preference for corotative vorticity

    Similar works