Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

Abstract

An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in Various Sustained Acceleration Fields.

    Similar works