Improved Flight Test Procedures for Flutter Clearance

Abstract

Flight flutter testing is an integral part of flight envelope clearance. This paper discusses advancements in several areas that are being investigated to improve efficiency and safety of flight test programs. Results are presented from recent flight testing of the F/A-18 Systems Research Aircraft. A wingtip excitation system was used to generate aeroelastic response data. This system worked well for many flight conditions but still displayed some anomalies. Wavelet processing is used to analyze the flight data. Filtered transfer functions are generated that greatly improve system identification. A flutter margin is formulated that accounts for errors between a model and flight data. Worst-case flutter margins are computed to demonstrate the flutter boundary may lie closer to the flight envelope than previously estimated. This paper concludes with developments for a distributed flight analysis environment and on-line health monitoring

    Similar works