Determining the Composition of the Vela Pulsar's Jet
- Publication date
- Publisher
Abstract
The pulsar jet is significant in explaining how the Vela pulsar's rotational energy is transported outward to the rest of the SNR, since direct radiation from the pulsar only accounts for a small percentage of the total power. Our previous ROSAT observations presented the first evidence that the pulsar is driving a narrow, collimated, and remarkably symmetrical jet into the SNR (Markwardt, C. and Oegelman, H., 1995, Nature, 375, p. 40) which we interpret to be from a 'cocoon' of hot gas surrounding the jet itself. We obtained an ASCA exposure of the jet in order to determine whether the spectrum is thermal or power-law continuum. The jet cocoon is detected with ASCA at approximately 2-3 x 10(exp -3) ct/s. The X-ray spectrum of the jet is remarkably similar to the surrounding supernova remnant spectrum and extends to X-ray energies of at least 7 keV, with a total flux of approximately 2 x 10(exp -13) erg/s sq cm sq arcmin. The only strong emission line is from He-like Neon at approx. 0.9 keV; otherwise the spectrum is quite smooth. The spectrum cannot be fit by any one standard plasma emission model, so we used models with two-components. The lower energy component is thermal and has a temperature of 0.29 +/- 0.03 keV; the higher energy portion can either be fit by a thermal component of temperature approx. 4 keV or a power law with photon index approx. 2.0. If the observed spectrum is of a 'traditional' jet cocoon, then we estimate the speed of the jet to be at least 800 km/s, depending on the angle of inclination of the jet axis to our line of sight. The mechanical power driving the jet is greater than or equal to 10(exp 36) erg/s which is comparable to the pulsar's spin-down luminosity of 7 x 10(exp 36) erg/s. and the mass flow rate at the head is greater than or equal to 10(exp -6) solar radius/yr. We conclude that the jet must be entraining material all along its length in order to generate such a large mass flow rate