Tailoring Silicon Oxycarbide Glasses for Oxidative Stability

Abstract

Blackglas(Trademark) polysiloxane systems produce silicon oxycarbide glasses by pyrolysis in inert atmosphere. The silicon oxycarbides evidence oxidative degradation that limits their lifetime as composite matrices. The present study characterizes bonding rearrangements in the oxycarbide network accompanying increases in pyrolysis temperature. It also addresses the changes in susceptibility to oxidation due to variations in the distribution of Si bonded species obtained under different processing conditions. The study is carried out using Si-29 nuclear magnetic resonance (NMR) spectroscopy and a design of experiments approach to model the oxidation behavior. The NMR results are compared with those obtained by thermogravimetric analysis (TGA). Samples pyrolyzed under inert conditions are compared to those pyrolyzed in reactive ammonia environments

    Similar works