Calibration of the advanced microwave sounding unit-A for NOAA-K

Abstract

The thermal-vacuum chamber calibration data from the Advanced Microwave Sounding Unit-A (AMSU-A) for NOAA-K, which will be launched in 1996, were analyzed to evaluate the instrument performance, including calibration accuracy, nonlinearity, and temperature sensitivity. The AMSU-A on NOAA-K consists of AMSU-A2 Protoflight Model and AMSU-A1 Flight Model 1. The results show that both models meet the instrument specifications, except the AMSU-A1 antenna beamwidths, which exceed the requirement of 3.3 +/- 10%. We also studied the instrument's radiometric characterizations which will be incorporated into the operational calibration algorithm for processing the in-orbit AMSU-A data from space. Particularly, the nonlinearity parameters which will be used for correcting the nonlinear contributions from an imperfect square-law detector were determined from this data analysis. It was found that the calibration accuracies (differences between the measured scene radiances and those calculated from a linear two-point calibration formula) are polarization-dependent. Channels with vertical polarizations show little cold biases at the lowest scene target temperature 84K, while those with horizontal polarizations all have appreciable cold biases, which can be up to 0.6K. It is unknown where these polarization-dependent cold biases originate, but it is suspected that some chamber contamination of hot radiances leaked into the cold scene target area. Further investigation in this matter is required. The existence and magnitude of nonlinearity in each channel were established and a quadratic formula for modeling these nonlinear contributions was developed. The model was characterized by a single parameter u, values of which were obtained for each channel via least-squares fit to the data. Using the best-fit u values, we performed a series of simulations of the quadratic corrections which would be expected from the space data after the launch of AMSU-A on NOAA-K. In these simulations, the cosmic background radiance corresponding to a cold space temperature 2.73K was adopted as one of the two reference points of calibration. The largest simulated nonlinear correction is about 0.3K, which occurs at channel 15 when the instrument temperature is at 38.09 deg C. Others are less than 0.2K in the remaining channels. Possible improvement for future instrument calibration is also discussed

    Similar works