Evaluation of Operational Procedures for Using a Time-Based Airborne Inter-arrival Spacing Tool

Abstract

An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. The objectives of this study were to validate the results of a prior Monte Carlo analysis of the ATAAS algorithm and to evaluate the concept from the standpoint of pilot acceptability and workload. Results showed that the aircraft was able to consistently achieve the target spacing interval within one second (the equivalent of approximately 220 ft at a final approach speed of 130 kt) when the ATAAS speed guidance was autothrottle-coupled, and a slightly greater (4-5 seconds), but consistent interval with the pilot-controlled speed modes. The subject pilots generally rated the workload level with the ATAAS procedure as similar to that with standard procedures, and also rated most aspects of the procedure high in terms of acceptability. Although pilots indicated that the head-down time was higher with ATAAS, the acceptability of head-down time was rated high. Oculometer data indicated slight changes in instrument scan patterns, but no significant change in the amount of time spent looking out the window between the ATAAS procedure versus standard procedures

    Similar works

    Full text

    thumbnail-image