research

Multiple positive solutions of a Sturm-Liouville boundary value problem with conflicting nonlinearities

Abstract

We study the second order nonlinear differential equation \begin{equation*} u"+ \sum_{i=1}^{m} \alpha_{i} a_{i}(x)g_{i}(u) - \sum_{j=0}^{m+1} \beta_{j} b_{j}(x)k_{j}(u) = 0, \end{equation*} where αi,βj>0\alpha_{i},\beta_{j}>0, ai(x),bj(x)a_{i}(x), b_{j}(x) are non-negative Lebesgue integrable functions defined in [0,L]\mathopen{[}0,L\mathclose{]}, and the nonlinearities gi(s),kj(s)g_{i}(s), k_{j}(s) are continuous, positive and satisfy suitable growth conditions, as to cover the classical superlinear equation u"+a(x)up=0u"+a(x)u^{p}=0, with p>1p>1. When the positive parameters βj\beta_{j} are sufficiently large, we prove the existence of at least 2m12^{m}-1 positive solutions for the Sturm-Liouville boundary value problems associated with the equation. The proof is based on the Leray-Schauder topological degree for locally compact operators on open and possibly unbounded sets. Finally, we deal with radially symmetric positive solutions for the Dirichlet problems associated with elliptic PDEs.Comment: 23 pages, 6 PNG figure

    Similar works