Band-gap Engineering in Sputter Deposited Amorphous/Microcrystalline Sc(x)Ga(1-x)N

Abstract

Reactive sputtering was used to grow thin films of Sc(x)Ga(1-x)N with scandium concentrations of 20%-70% on quartz substrates at temperatures of 300-675 K. X-ray diffraction (XRD) of the films showed either weak or no structure, suggesting the films are amorphous or microcrystalline. Optical absorption spectra were taken of each sample and the optical band gap was determined. The band gap varied linearly with increasing Ga concentration between 2.0 and 3.5 eV. Ellipsometry was used to confirm the band gap measurements and provide optical constants in the range 250-1200 nm. ScN and GaN have different crystal structures (rocksalt and wurzite, respectively), and thus may form a heterogeneous mixture as opposed to an alloy. Since the XRD data were inconclusive, bilayers of ScN/GaN were grown and optical absorption spectra taken. A fundamental difference in the spectra between the bilayer films and alloy films was seen, suggesting the films are alloys, not heterogeneous mixtures

    Similar works

    Full text

    thumbnail-image