research

Teflon FEP Analyzed After Retrieval From the Hubble Space Telescope

Abstract

During the Hubble Space Telescope (HST) Second Servicing Mission, 6.8 years after the telescope was deployed in low Earth orbit, degradation of unsupported Teflon FEP (DuPont; fluorinated ethylene propylene), used as the outer layer of the multilayer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer (see the photograph) was retrieved during the second servicing mission and returned to Earth for ground testing and evaluation. Also retrieved was a Teflon FEP radiator surface from a cryogen vent cover that was exposed to the space environment on the aft bulkhead of the HST. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included determining the FEP degradation mechanisms. As part of the investigations into the degradation mechanisms, specimens retrieved from the first and second HST servicing missions, 3.6 and 6.8 years after launch, respectively, were characterized through exhaustive mechanical, optical, and chemical testing. Testing led by Goddard included scanning electron microscopy, optical microscopy, tensile testing, solar absorptance measurements, time-of-flight secondary ion mass spectroscopy (TOF-SIMS), Fourier transform infrared microscopy (m-FTIR), attenuated total reflectance infrared microscopy (ATR/FTIR), and x-ray diffraction (XRD). The NASA Lewis Research Center contributed significantly to the analysis of the retrieved HST materials by leading efforts and providing results of bend testing, surface microhardness measurements, x-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance spectroscopy, and density measurements. Other testing was conducted by Nano Instruments, Inc., and the University of Akron

    Similar works