Distant Secondary Craters and Age Constraints on Young Martian Terrains

Abstract

Are small (less than approx. 1 km diameter) craters on Mars and the Moon dominated by primary impacts, by secondary impacts of much larger primary craters, or are both primaries and secondaries significant? This question is critical to age constraints for young terrains and for older terrains covering small areas, where only small craters are superimposed on the unit. If the martian rayed crater Zunil is representative of large impact events on Mars, then the density of secondaries should exceed the density of primaries at diameters a factor of ~1000 smaller than that of the largest contributing primary crater. On the basis of morphology and depth/diameter measurements, most small craters on Mars could be secondaries. Two additional observations (discussed below) suggest that the production functions of Hartmann and Neukum predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications

    Similar works

    Full text

    thumbnail-image