research

Incremental 22-Edge-Connectivity in Directed Graphs

Abstract

In this paper, we initiate the study of the dynamic maintenance of 22-edge-connectivity relationships in directed graphs. We present an algorithm that can update the 22-edge-connected blocks of a directed graph with nn vertices through a sequence of mm edge insertions in a total of O(mn)O(mn) time. After each insertion, we can answer the following queries in asymptotically optimal time: (i) Test in constant time if two query vertices vv and ww are 22-edge-connected. Moreover, if vv and ww are not 22-edge-connected, we can produce in constant time a "witness" of this property, by exhibiting an edge that is contained in all paths from vv to ww or in all paths from ww to vv. (ii) Report in O(n)O(n) time all the 22-edge-connected blocks of GG. To the best of our knowledge, this is the first dynamic algorithm for 22-connectivity problems on directed graphs, and it matches the best known bounds for simpler problems, such as incremental transitive closure.Comment: Full version of paper presented at ICALP 201

    Similar works