research
Fail-Safe Operation of a High-Temperature Magnetic Bearing Investigated for Gas Turbine Engine Applications
- Publication date
- Publisher
Abstract
The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed a three-axis high-temperature magnetic bearing suspension rig to enhance the safety of the bearing system up to 1000 F. This test rig can accommodate thrust and radial bearings up to a 22.84 cm (9 in.) diameter with a maximum axial loading of 22.25 kN (5000 lb) and a maximum radial loading up to 4.45 kN (1000 lb). The test facility was set up to test magnetic bearings under high-temperature (1100 F) and high-speed (20,000 rpm) conditions. The magnetic bearing is located at the center of gravity of the rotor between two high-temperature grease-packed mechanical ball bearings. The drive-end duplex angular contact ball bearing, which is in full contact, acts as a moment release and provides axial stability. The outboard end ball bearing has a 0.015-in. radial clearance between the rotor to act as a backup bearing and to compensate for axial thermal expansion. There is a 0.020-in. radial air gap between the stator pole and the rotor. The stator was wrapped with three 1-kW band heaters to create a localized hot section; the mechanical ball bearings were outside this section. Eight threaded rods supported the stator. These incorporated a plunger and Bellville washers to compensate for radial thermal expansion and provide rotor-to-stator alignment. The stator was instrumented with thermocouples and a current sensor for each coil. Eight air-cooled position sensors were mounted outside the hot section to monitor the rotor. Another sensor monitored this rotation of the outboard backup bearing. Ground fault circuit interrupts were incorporated into all power amplifier loops for personnel safety. All instrumentation was monitored and recorded on a LabView-based data acquisition system. Currently, this 12-pole heteropolar magnetic bearing has 13 thermal cycles and over 26 hr of operation at 1000 F