research

Reduced-Order Blade Mistuning Analysis Techniques Developed for the Robust Design of Engine Rotors

Abstract

The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo-Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using eigenfrequency curve veerings to identify "danger zones" in the operating conditions--ranges of rotational speeds and engine orders in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued. Several methods will be investigated, including the use of intentional mistuning patterns to mitigate the harmful effects of random mistuning, and the modification of disk stiffness to avoid reaching critical values of interblade coupling in the desired operating range. Recent research progress is summarized in the following paragraphs. First, significant progress was made in the development of the component mode mistuning (CMM) and static mode compensation (SMC) methods for reduced-order modeling of mistuned bladed disks (see the following figure). The CMM method has been formalized and extended to allow a general treatment of mistuning. In addition, CMM allows individual mode mistuning, which accounts for the realistic effects of local variations in blade properties that lead to different mistuning values for different mode types (e.g., mistuning of the first torsion mode versus the second flexural mode). The accuracy and efficiency of the CMM method and the corresponding Turbo-Reduce code were validated for an example finite element model of a bladed disk

    Similar works