research
adwTools Developed: New Bulk Alloy and Surface Analysis Software for the Alloy Design Workbench
- Publication date
- Publisher
Abstract
A suite of atomistic modeling software, called the Alloy Design Workbench, has been developed by the Computational Materials Group at the NASA Glenn Research Center and the Ohio Aerospace Institute (OAI). The main goal of this software is to guide and augment experimental materials research and development efforts by creating powerful, yet intuitive, software that combines a graphical user interface with an operating code suitable for real-time atomistic simulations of multicomponent alloy systems. Targeted for experimentalists, the interface is straightforward and requires minimum knowledge of the underlying theory, allowing researchers to focus on the scientific aspects of the work. The centerpiece of the Alloy Design Workbench suite is the adwTools module, which concentrates on the atomistic analysis of surfaces and bulk alloys containing an arbitrary number of elements. An additional module, adwParams, handles ab initio input for the parameterization used in adwTools. Future modules planned for the suite include adwSeg, which will provide numerical predictions for segregation profiles to alloy surfaces and interfaces, and adwReport, which will serve as a window into the database, providing public access to the parameterization data and a repository where users can submit their own findings from the rest of the suite. The entire suite is designed to run on desktop-scale computers. The adwTools module incorporates a custom OAI/Glenn-developed Fortran code based on the BFS (Bozzolo- Ferrante-Smith) method for alloys, ref. 1). The heart of the suite, this code is used to calculate the energetics of different compositions and configurations of atoms