research

Stability of the Tilt Modes of an Actively Controlled Flywheel Analyzed

Abstract

Applications of strongly gyroscopic rotors are becoming important, including flywheels for terrestrial and space energy storage and various attitude control devices for spacecraft. Some of these applications, especially the higher speed ones for energy storage, will have actively controlled magnetic bearings. These bearings will be required where speeds are too high for conventional bearings, where adequate lubrication is undesirable or impossible, or where bearing losses must be minimized for efficient energy storage. Flywheel rotors are highly gyroscopic, and above some speed that depends on the bandwidth of the feedback system, they always become unstable in an actively controlled magnetic bearing system. To assess ways to prevent instability until speeds well above the desired operating range, researchers at the NASA Lewis Research Center used a commercial controls code to calculate the eigenvalues of the tilt modes of a rigid gyroscopic rotor supported by active magnetic bearings. The real part of the eigenvalue is the negative of the damping of the mode, and the imaginary part is approximately equal to the mode s frequency

    Similar works