research

High-Flow PMR-Polymide Composites Developed With Mechanical Properties Comparable to Other High-Temperature Systems

Abstract

PMR polyimides, in particular PMR-15, are well known for their excellent high-temperature stability and performance, and solvent resistance. However, the processing of these materials is limited, for the most part, to prepreg-based methods, such as compression or autoclave processing. These methods involve substantial amounts of hand labor, and as a result, manufacturing costs for components made from PMR polyimides can be high. In cost-sensitive applications, these high manufacturing costs can make the use of PMR polyimide-based components cost prohibitive. Lower cost manufacturing methods, such as resin transfer molding (RTM) and resin film infusion, have been demonstrated to reduce manufacturing costs by as much as 50 percent over prepreg-based methods. However, these processes are only amenable to materials with melt viscosities below 30 poise. Most PMR polyimides have melt viscosities on the order of 100 poise or higher. Recent efforts at the NASA Glenn Research Center have focused on chemical modifications to PMR polyimides to reduce their melt viscosity to the point where they could be processed by these low-cost manufacturing methods without adversely affecting their high-temperature properties and performance. These efforts have led to a new family of PMR polyimides that have melt viscosities significantly lower than that of PMR-15. Reductions in melt viscosity are brought about through the introduction of molecular twists in the polymer backbone. Carbon fiber (T650- 35) composites were prepared from one of these polyimides, designated PMR-Flex, by compression molding. The properties of these composites are presented below and compared with comparable composites made from PMR-15 and PETI-RTM, a new low-melt-viscosity polyimide

    Similar works