research
Surface Collisions Involving Particles and Moisture (SCIP'M)
- Publication date
- Publisher
Abstract
Experiments were performed on the collision of a solid sphere with a nearly horizontal flat surface covered with a thin layer of viscous liquid. High-speed collisions were obtained by dropping the ball onto the surface from various heights, using gravitational acceleration. Low-speed collisions were obtained using pendulums with long strings or by launching the balls at low velocities in the reduced-gravity environment of parabolic flight. The sphere bounces only when the impact velocity exceeds a critical value. The coefficient of restitution (ratio of rebound velocity to impact velocity) increases with increasing impact velocity above the critical value, indicating the increasing relative importance of elastic deformation to viscous dissipation. The critical impact velocity increases, and the coefficient of restitution decreases, with increasing viscosity or thickness of the liquid layer and with decreasing density or size of the sphere. The ratio of the wet and dry coefficients is expressed as a function of the Stokes number (ratio of particle inertia and viscous forces), showing good agreement between theory and experiment. Similar experiments were performed with the flat surface inclined at various angles to the approaching sphere. A modified Stokes number, which is a measure of the ratio of inertia of the sphere in the normal direction to the viscous forces exerted by the fluid layer, was used for the analysis of oblique collisions. Even for these oblique collisions, it was found that no rebound of the ball was observed below a certain critical Stokes number. The coefficient of normal restitution, defined as a ratio of normal rebound velocity to normal approach velocity, was found to increase beyond the critical Stokes number and even out as it approaches the value for dry restitution at high Stokes numbers. It was also found that, for smooth spheres like steel, the normal restitution at the same modified Stokes number is independent of the angle of impact. The tangential coefficient of restitution, defined as the ratio of tangential rebound velocity to tangential approach velocity, is found to be nearly unity, except for very low approach velocities. Thus, as a first approximation, the theories that predict the coefficient of restitution for head-on wet collisions can be extended to predict the coefficient of normal restitution for oblique wet collisions. Additional experiments were performed with soft surfaces in which a porous cloth or sponge layer was placed over the hard, flat surface. In these experiments, the coefficient of restitution was found to decrease with increasing impact velocity, due to inelastic losses in the soft material. A model combining inelastic deformation and flow through porous media was developed to describe these findings