Microlensing provides a unique tool to break the stellar to dark matter
degeneracy in the inner Milky Way. We combine N-body dynamical models fitted to
the Milky Way's Boxy/Peanut bulge with exponential disk models outside this,
and compute the microlensing properties. Considering the range of models
consistent with the revised MOA-II data, we find low dark matter fractions in
the inner Galaxy: at the peak of their stellar rotation curve a fraction
fv=(0.88±0.07) of the circular velocity is baryonic (at 1σ, fv>0.72 at 2σ). These results are in agreement with constraints from the
EROS-II microlensing survey of brighter resolved stars, where we find
fv=(0.9±0.1) at 1σ. Our fiducial model of a disk with scale length
2.6kpc, and a bulge with a low dark matter fraction of 12%, agrees with both
the revised MOA-II and EROS-II microlensing data. The required baryonic
fractions, and the resultant low contribution from dark matter, are consistent
with the NFW profiles produced by dissipationless cosmological simulations in
Milky Way mass galaxies. They are also consistent with recent prescriptions for
the mild adiabatic contraction of Milky Way mass haloes without the need for
strong feedback, but there is some tension with recent measurements of the
local dark matter density. Microlensing optical depths from the larger OGLE-III
sample could improve these constraints further when available.Comment: 14 pages, 13 figures, submitted to MNRA