Using high-resolution simulations with explicit treatment of stellar feedback
physics based on the FIRE (Feedback in Realistic Environments) project, we
study how galaxy formation and the interstellar medium (ISM) are affected by
magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and
sub-grid metal diffusion from unresolved turbulence. We consider controlled
simulations of isolated (non-cosmological) galaxies but also a limited set of
cosmological "zoom-in" simulations. Although simulations have shown significant
effects from these physics with weak or absent stellar feedback, the effects
are much weaker than those of stellar feedback when the latter is modeled
explicitly. The additional physics have no systematic effect on galactic star
formation rates (SFRs) . In contrast, removing stellar feedback leads to SFRs
being over-predicted by factors of ∼10−100. Without feedback, neither
galactic winds nor volume filling hot-phase gas exist, and discs tend to
runaway collapse to ultra-thin scale-heights with unphysically dense clumps
congregating at the galactic center. With stellar feedback, a multi-phase,
turbulent medium with galactic fountains and winds is established. At currently
achievable resolutions and for the investigated halo mass range
1010−1013M⊙, the additional physics investigated here (MHD,
conduction, viscosity, metal diffusion) have only weak (∼10%-level)
effects on regulating SFR and altering the balance of phases, outflows, or the
energy in ISM turbulence, consistent with simple equipartition arguments. We
conclude that galactic star formation and the ISM are primarily governed by a
combination of turbulence, gravitational instabilities, and feedback. We add
the caveat that AGN feedback is not included in the present work