research

Effects of an Early-Time Impact Generated Vapor Blast in the Martian Atmosphere: Formation of High-Latitude Pedestal Craters

Abstract

Following impact, vapor expansion creates an intense airblast that interacts with the ambient atmosphere. The resulting hemi-spherical shock wave leaves a signature on the surface that is dependent on initial atmospheric and surface conditions. Here we propose that the formation of pedestal craters (craters surrounded by an erosion-resistant pedestal) may be a direct consequence of extreme winds and elevated temperatures generated by such an impact-induced atmospheric blast. Pedestal craters, first recognized in Mariner 9 data, are a unique feature on Mars and likely a signature of near-surface volatiles. They are found at high latitudes (small pedestals, Amazonian to Late Hesperian in age) and in thick equatorial mantling deposits (larger pedestals, early Hesperian to Noachian in age). Previously suggested mechanisms for pedestal crater formation (e.g., wind: ejecta curtain vortices or vapor blast; and ejecta dust: armoring) do not provide a complete picture. The clear evidence for near-surface volatiles at high latitudes requires a re-evaluation of these alternative models. The results presented here suggest that a combined atmospheric blast/thermal model provides a plausible formation hypothesis

    Similar works