The preconditioned Crank-Nicolson (pCN) method is a Markov Chain Monte Carlo
(MCMC) scheme, specifically designed to perform Bayesian inferences in function
spaces. Unlike many standard MCMC algorithms, the pCN method can preserve the
sampling efficiency under the mesh refinement, a property referred to as being
dimension independent. In this work we consider an adaptive strategy to further
improve the efficiency of pCN. In particular we develop a hybrid adaptive MCMC
method: the algorithm performs an adaptive Metropolis scheme in a chosen finite
dimensional subspace, and a standard pCN algorithm in the complement space of
the chosen subspace. We show that the proposed algorithm satisfies certain
important ergodicity conditions. Finally with numerical examples we demonstrate
that the proposed method has competitive performance with existing adaptive
algorithms.Comment: arXiv admin note: text overlap with arXiv:1511.0583