research

A1A_1 theory of weights for rough homogeneous singular integrals and commutators

Abstract

Quantitative A1AA_1-A_\infty estimates for rough homogeneous singular integrals TΩT_{\Omega} and commutators of BMOBMO symbols and TΩT_{\Omega} are obtained. In particular the following estimates are proved: % TΩLp(w)cn,pΩL[w]A11p[w]A1+1pfLp(w) \|T_\Omega \|_{L^p(w)}\le c_{n,p}\|\Omega\|_{L^\infty} [w]_{A_1}^{\frac{1}{p}}\,[w]_{A_{\infty}}^{1+\frac{1}{p'}}\|f\|_{L^p(w)} % and % [b,TΩ]fLp(w)cn,pbBMOΩL[w]A11p[w]A2+1pfLp(w), \| [b,T_{\Omega}]f\|_{L^{p}(w)}\leq c_{n,p}\|b\|_{BMO}\|\Omega\|_{L^{\infty}} [w]_{A_1}^{\frac{1}{p}}[w]_{A_{\infty}}^{2+\frac{1}{p'}}\|f\|_{L^{p}\left(w\right)}, % for 1<p<1<p<\infty and 1/p+1/p=11/p+1/p'=1.Comment: 19 page

    Similar works