research

An Improved Distance and Mass Estimate for Sgr A* from a Multistar Orbit Analysis

Abstract

We present new, more precise measurements of the mass and distance of our Galaxy's central supermassive black hole, Sgr A*. These results stem from a new analysis that more than doubles the time baseline for astrometry of faint stars orbiting Sgr A*, combining two decades of speckle imaging and adaptive optics data. Specifically, we improve our analysis of the speckle images by using information about a star's orbit from the deep adaptive optics data (2005 - 2013) to inform the search for the star in the speckle years (1995 - 2005). When this new analysis technique is combined with the first complete re-reduction of Keck Galactic Center speckle images using speckle holography, we are able to track the short-period star S0-38 (K-band magnitude = 17, orbital period = 19 years) through the speckle years. We use the kinematic measurements from speckle holography and adaptive optics to estimate the orbits of S0-38 and S0-2 and thereby improve our constraints of the mass (MbhM_{bh}) and distance (RoR_o) of Sgr A*: Mbh=4.02±0.16±0.04×106 MM_{bh} = 4.02\pm0.16\pm0.04\times10^6~M_{\odot} and 7.86±0.14±0.047.86\pm0.14\pm0.04 kpc. The uncertainties in MbhM_{bh} and RoR_o as determined by the combined orbital fit of S0-2 and S0-38 are improved by a factor of 2 and 2.5, respectively, compared to an orbital fit of S0-2 alone and a factor of \sim2.5 compared to previous results from stellar orbits. This analysis also limits the extended dark mass within 0.01 pc to less than 0.13×106 M0.13\times10^{6}~M_{\odot} at 99.7% confidence, a factor of 3 lower compared to prior work.Comment: 56 pages, 14 figures, accepted to Ap

    Similar works