We obtain a structurally stable family of smooth ordinary differential
equations exhibiting heteroclinic tangencies for a dense subset of parameters.
We use this to find vector fields C2-close to an element of the family
exhibiting a tangency, for which the set of solutions with historic behaviour
contains an open set. This provides an affirmative answer to Taken's Last
Problem (F. Takens (2008) Nonlinearity, 21(3) T33--T36). A limited solution
with historic behaviour is one for which the time averages do not converge as
time goes to infinity. Takens' problem asks for dynamical systems where
historic behaviour occurs persistently for initial conditions in a set with
positive Lebesgue measure.
The family appears in the unfolding of a degenerate differential equation
whose flow has an asymptotically stable heteroclinic cycle involving
two-dimensional connections of non-trivial periodic solutions. We show that the
degenerate problem also has historic behaviour, since for an open set of
initial conditions starting near the cycle, the time averages approach the
boundary of a polygon whose vertices depend on the centres of gravity of the
periodic solutions and their Floquet multipliers.
We illustrate our results with an explicit example where historic behaviour
arises C2-close of a SO(2)-equivariant vector field