research

An Empirical Approach to Cosmological Galaxy Survey Simulation: Application to SPHEREx Low-Resolution Spectroscopy

Abstract

Highly accurate models of the galaxy population over cosmological volumes are necessary in order to predict the performance of upcoming cosmological missions. We present a data-driven model of the galaxy population constrained by deep 0.1-8 μm\rm \mu m imaging and spectroscopic data in the COSMOS survey, with the immediate goal of simulating the spectroscopic redshift performance of the proposed SPHEREx mission. SPHEREx will obtain over the full-sky R41R\sim41 spectrophotometry at moderate spatial resolution (6"\sim6") over the wavelength range 0.75-4.18 μm\rm \mu m and R135R\sim135 over the wavelength range 4.18-5 μm\rm \mu m. We show that our simulation accurately reproduces a range of known galaxy properties, encapsulating the full complexity of the galaxy population and enables realistic, full end-to-end simulations to predict mission performance. Finally, we discuss potential applications of the simulation framework to future cosmology missions and give a description of released data products

    Similar works