Sponsored search represents a major source of revenue for web search engines.
This popular advertising model brings a unique possibility for advertisers to
target users' immediate intent communicated through a search query, usually by
displaying their ads alongside organic search results for queries deemed
relevant to their products or services. However, due to a large number of
unique queries it is challenging for advertisers to identify all such relevant
queries. For this reason search engines often provide a service of advanced
matching, which automatically finds additional relevant queries for advertisers
to bid on. We present a novel advanced matching approach based on the idea of
semantic embeddings of queries and ads. The embeddings were learned using a
large data set of user search sessions, consisting of search queries, clicked
ads and search links, while utilizing contextual information such as dwell time
and skipped ads. To address the large-scale nature of our problem, both in
terms of data and vocabulary size, we propose a novel distributed algorithm for
training of the embeddings. Finally, we present an approach for overcoming a
cold-start problem associated with new ads and queries. We report results of
editorial evaluation and online tests on actual search traffic. The results
show that our approach significantly outperforms baselines in terms of
relevance, coverage, and incremental revenue. Lastly, we open-source learned
query embeddings to be used by researchers in computational advertising and
related fields.Comment: 10 pages, 4 figures, 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2016, Pisa, Ital