research

Holographic Space-time, Newton's Law and the Dynamics of Black Holes

Abstract

We revisit the construction of models of quantum gravity in d dimensional Minkowski space in terms of random tensor models, and correct some mistakes in our previous treatment of the subject. We find a large class of models in which the large impact parameter scattering scales with energy and impact parameter like Newton`s law. These same models also have emergent energy, momentum and angular conservation laws, despite being based on time dependent Hamiltonians. Many of the scattering amplitudes have a Feynman diagram like structure: local interaction vertices connected by propagation of free particles (really Sterman-Weinberg jets of particles). However, there are also amplitudes where jets collide to form large meta-stable objects, with all the scaling properties of black holes: energy, entropy and temperature, as well as the characteristic time scale for the decay of perturbations. We generalize the conjecture of Sekino and Susskind, to claim that all of these models are fast scramblers. The rationale for this claim is that the interactions are invariant under fuzzy subgroups of the group of volume preserving diffeomorphisms, so that they are highly non-local on the holographic screen. We review how this formalism resolves the Firewall Paradox.Comment: This paper is withdrawn. Please see arXiv:2003.0363 [hep-th] (the new one

    Similar works

    Full text

    thumbnail-image

    Available Versions