We study the possible breakdown of quantum thermalization in a model of
itinerant electrons on a one-dimensional chain without disorder, with both spin
and charge degrees of freedom. The eigenstates of this model exhibit peculiar
properties in the entanglement entropy, the apparent scaling of which is
modified from a "volume law" to an "area law" after performing a partial,
site-wise measurement on the system. These properties and others suggest that
this model realizes a new, non-thermal phase of matter, known as a quantum
disentangled liquid (QDL). The putative existence of this phase has striking
implications for the foundations of quantum statistical mechanics.Comment: As accepted to PR