While the Pontryagin Maximum Principle can be used to calculate candidate
extremals for optimal orbital transfer problems, these candidates cannot be
guaranteed to be at least locally optimal unless sufficient optimality
conditions are satisfied. In this paper, through constructing a parameterized
family of extremals around a reference extremal, some second-order necessary
and sufficient conditions for the strong-local optimality of the free-time
multi-burn fuel-optimal transfer are established under certain regularity
assumptions. Moreover, the numerical procedure for computing these optimality
conditions is presented. Finally, two medium-thrust fuel-optimal trajectories
with different number of burn arcs for a typical orbital transfer problem are
computed and the local optimality of the two computed trajectories are tested
thanks to the second-order optimality conditions established in this paper