Polymer translocation is a promising strategy for the next-generation DNA
sequencing technologies. The use of biological and synthetic nano-pores,
however, still suffers from serious drawbacks. In particular, the width of the
membrane layer can accommodate several bases at the same time, making difficult
accurate sequencing applications. More recently, the use of graphene membranes
has paved the way to new sequencing capabilities, with the possibility to
measure transverse currents, among other advances. The reduced thickness of
these new membranes poses new questions on the effect of deformability and
vibrations of the membrane on the translocation process, two features which are
not taken into account in the well-established theoretical frameworks. Here, we
make a first step forward in this direction. We report numerical simulation
work on a model system simple enough to allow gathering significant insight on
the effect of these features on the average translocation time, with
appropriate statistical significance. We have found that the interplay between
thermal fluctuations and the deformability properties of the nano-pore play a
crucial role in determining the process. We conclude by discussing new
directions for further work