This article extends the literature on copulas with discrete or continuous
marginals to the case where some of the marginals are a mixture of discrete and
continuous components. We do so by carefully defining the likelihood as the
density of the observations with respect to a mixed measure. The treatment is
quite general, although we focus focus on mixtures of Gaussian and Archimedean
copulas. The inference is Bayesian with the estimation carried out by Markov
chain Monte Carlo. We illustrate the methodology and algorithms by applying
them to estimate a multivariate income dynamics model.Comment: 46 pages, 8 tables and 4 figure