We study non-stationary stochastic processes arising from sequential
dynamical systems built on maps with a neutral fixed points and prove the
existence of Extreme Value Laws for such processes. We use an approach
developed in \cite{FFV16}, where we generalised the theory of extreme values
for non-stationary stochastic processes, mostly by weakening the uniform mixing
condition that was previously used in this setting. The present work is an
extension of our previous results for concatenations of uniformly expanding
maps obtained in \cite{FFV16}.Comment: To appear in Proceedings of the American Mathematical Society. arXiv
admin note: substantial text overlap with arXiv:1510.0435