A combination of classical molecular dynamics (MM/MD) and quantum chemical
calculations based on the density functional theory (DFT) was performed to
describe conformational properties of diphenylethyne (DPE), methylated-DPE and
poly para phenylene ethynylene (PPE). DFT calculations were employed to improve
and develop force field parameters for MM/MD simulations. Many-body Green's
functions theory within the GW approximation and the Bethe-Salpeter equation
were utilized to describe excited states of the systems. Reliability of the
excitation energies based on the MM/MD conformations was examined and compared
to the excitation energies from DFT conformations. The results show an overall
agreement between the optical excitations based on MM/MD conformations and DFT
conformations. This allows for calculation of excitation energies based on
MM/MD conformations