research

Experimental and Theoretical Study of Thermodynamics of the Reaction of Titania and Water at High Temperatures

Abstract

The transpiration method was used to determine the volatility of titanium dioxide (TiO2) in water vapor-containing environments at temperatures between 1473 and 1673 K. Water contents ranged from 0 to 76 mole % in oxygen or argon carrier gases for 20 to 250 hr exposure times. Results indicate that oxygen is not a key contributor to volatilization and the primary reaction for volatilization in this temperature range is: TiO2(s) + H2O(g) = TiO(OH)2(g). Data were analyzed with both the second and third law methods to extract an enthalpy and entropy of formation. The geometry and vibrational frequencies of TiO(OH)2(g) were computed using B3LYP density functional theory, and the enthalpy of formation was computed using the coupled-cluster singles and doubles method with a perturbative correction for connected triple substitutions [CCSD(T)]. Thermal functions are calculated using both a structure with bent and linear hydroxyl groups. Calculated second and third heats show closer agreement with the linear hydroxyl group, suggesting more experimental and computational spectroscopic and structural work is needed on this system

    Similar works