research

Multidimensional Thermoelasticity for Nonsimple Materials -- Well-Posedness and Long-Time Behavior

Abstract

An initial-boundary value problem for the multidimensional type III thermoelaticity for a nonsimple material with a center of symmetry is considered. In the linear case, the well-posedness with and without Kelvin-Voigt and/or frictional damping in the elastic part as well as the lack of exponential stability in the elastically undamped case is proved. Further, a frictional damping for the elastic component is shown to lead to the exponential stability. A Cattaneo-type hyperbolic relaxation for the thermal part is introduced and the well-posedness and uniform stability under a nonlinear frictional damping are obtained using a compactness-uniqueness-type argument. Additionally, a connection between the exponential stability and exact observability for unitary C0C_{0}-groups is established.Comment: 28 page

    Similar works