research

A bound for the eigenvalue counting function for Krein--von Neumann and Friedrichs extensions

Abstract

For an arbitrary open, nonempty, bounded set ΩRn\Omega \subset \mathbb{R}^n, nNn \in \mathbb{N}, and sufficiently smooth coefficients a,b,qa,b,q, we consider the closed, strictly positive, higher-order differential operator AΩ,2m(a,b,q)A_{\Omega, 2m} (a,b,q) in L2(Ω)L^2(\Omega) defined on W02m,2(Ω)W_0^{2m,2}(\Omega), associated with the higher-order differential expression τ2m(a,b,q):=(j,k=1n(ijbj)aj,k(ikbk)+q)m,mN, \tau_{2m} (a,b,q) := \bigg(\sum_{j,k=1}^{n} (-i \partial_j - b_j) a_{j,k} (-i \partial_k - b_k)+q\bigg)^m, \quad m \in \mathbb{N}, and its Krein--von Neumann extension AK,Ω,2m(a,b,q)A_{K, \Omega, 2m} (a,b,q) in L2(Ω)L^2(\Omega). Denoting by N(λ;AK,Ω,2m(a,b,q))N(\lambda; A_{K, \Omega, 2m} (a,b,q)), λ>0\lambda > 0, the eigenvalue counting function corresponding to the strictly positive eigenvalues of AK,Ω,2m(a,b,q)A_{K, \Omega, 2m} (a,b,q), we derive the bound N(λ;AK,Ω,2m(a,b,q))Cvn(2π)n(1+2m2m+n)n/(2m)λn/(2m),λ>0, N(\lambda; A_{K, \Omega, 2m} (a,b,q)) \leq C v_n (2\pi)^{-n} \bigg(1+\frac{2m}{2m+n}\bigg)^{n/(2m)} \lambda^{n/(2m)} , \quad \lambda > 0, where C=C(a,b,q,Ω)>0C = C(a,b,q,\Omega)>0 (with C(In,0,0,Ω)=ΩC(I_n,0,0,\Omega) = |\Omega|) is connected to the eigenfunction expansion of the self-adjoint operator A~2m(a,b,q)\widetilde A_{2m} (a,b,q) in L2(Rn)L^2(\mathbb{R}^n) defined on W2m,2(Rn)W^{2m,2}(\mathbb{R}^n), corresponding to τ2m(a,b,q)\tau_{2m} (a,b,q). Here vn:=πn/2/Γ((n+2)/2)v_n := \pi^{n/2}/\Gamma((n+2)/2) denotes the (Euclidean) volume of the unit ball in Rn\mathbb{R}^n. Our method of proof relies on variational considerations exploiting the fundamental link between the Krein--von Neumann extension and an underlying abstract buckling problem, and on the distorted Fourier transform defined in terms of the eigenfunction transform of A~2(a,b,q)\widetilde A_{2} (a,b,q) in L2(Rn)L^2(\mathbb{R}^n). We also consider the analogous bound for the eigenvalue counting function for the Friedrichs extension AF,Ω,2m(a,b,q)A_{F,\Omega, 2m} (a,b,q) in L2(Ω)L^2(\Omega) of AΩ,2m(a,b,q)A_{\Omega, 2m} (a,b,q). No assumptions on the boundary Ω\partial \Omega of Ω\Omega are made.Comment: 39 pages. arXiv admin note: substantial text overlap with arXiv:1403.373

    Similar works