Recently, numerous approaches have emerged in the social sciences to exploit
the opportunities made possible by the vast amounts of data generated by online
social networks (OSNs). Having access to information about users on such a
scale opens up a range of possibilities, all without the limitations associated
with often slow and expensive paper-based polls. A question that remains to be
satisfactorily addressed, however, is how demography is represented in the OSN
content? Here, we study language use in the US using a corpus of text compiled
from over half a billion geo-tagged messages from the online microblogging
platform Twitter. Our intention is to reveal the most important spatial
patterns in language use in an unsupervised manner and relate them to
demographics. Our approach is based on Latent Semantic Analysis (LSA) augmented
with the Robust Principal Component Analysis (RPCA) methodology. We find
spatially correlated patterns that can be interpreted based on the words
associated with them. The main language features can be related to slang use,
urbanization, travel, religion and ethnicity, the patterns of which are shown
to correlate plausibly with traditional census data. Our findings thus validate
the concept of demography being represented in OSN language use and show that
the traits observed are inherently present in the word frequencies without any
previous assumptions about the dataset. Thus, they could form the basis of
further research focusing on the evaluation of demographic data estimation from
other big data sources, or on the dynamical processes that result in the
patterns found here