research
Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity
- Publication date
- Publisher
Abstract
A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (< or = 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), a growing spherical diffusion flame extinguishes at 1200 K due to radiative heat losses. This is typically followed by a transition to the low-temperature (cool-flame) regime with a reaction zone (at 700 K) in close proximity to the fuel source. The 'cool flame' regime is formed due to the negative temperature coefficient in the low-temperature chemistry. After a relatively long period (18 s) of the cool flame regime, a flash re-ignition occurs, associated with flame-edge propagation and subsequent extinction of the re-ignited flame. In a low-speed (3 mm/s) airstream (which simulates the slight droplet movement), the diffusion flame is enhanced upstream and experiences a local extinction downstream at 1200 K, followed by steady flame pulsations (0.4 Hz). At higher air velocities (4-10 mm/s), the locally extinguished flame becomes steady state. The present axisymmetric computational approach helps in revealing the non-premixed 'cool flame' structure and 2D flame-flow interactions observed in recent microgravity droplet combustion experiments