Facial expressions are one of the most powerful, natural and immediate means
for human being to communicate their emotions and intensions. Recognition of
facial expression has many applications including human-computer interaction,
cognitive science, human emotion analysis, personality development etc. In this
paper, we propose a new method for the recognition of facial expressions from
single image frame that uses combination of appearance and geometric features
with support vector machines classification. In general, appearance features
for the recognition of facial expressions are computed by dividing face region
into regular grid (holistic representation). But, in this paper we extracted
region specific appearance features by dividing the whole face region into
domain specific local regions. Geometric features are also extracted from
corresponding domain specific regions. In addition, important local regions are
determined by using incremental search approach which results in the reduction
of feature dimension and improvement in recognition accuracy. The results of
facial expressions recognition using features from domain specific regions are
also compared with the results obtained using holistic representation. The
performance of the proposed facial expression recognition system has been
validated on publicly available extended Cohn-Kanade (CK+) facial expression
data sets.Comment: Facial expressions, Local representation, Appearance features,
Geometric features, Support vector machine