research

Mountain pass solutions for the fractional Berestycki-Lions problem

Abstract

We investigate the existence of least energy solutions and infinitely many solutions for the following nonlinear fractional equation (-\Delta)^{s} u = g(u) \mbox{ in } \mathbb{R}^{N}, where s(0,1)s\in (0,1), N2N\geq 2, (Δ)s(-\Delta)^{s} is the fractional Laplacian and g:RRg: \mathbb{R} \rightarrow \mathbb{R} is an odd C1,α\mathcal{C}^{1, \alpha} function satisfying Berestycki-Lions type assumptions. The proof is based on the symmetric mountain pass approach developed by Hirata, Ikoma and Tanaka in \cite{HIT}. Moreover, by combining the mountain pass approach and an approximation argument, we also prove the existence of a positive radially symmetric solution for the above problem when gg satisfies suitable growth conditions which make our problem fall in the so called "zero mass" case

    Similar works