research

Structural CNT Composites Part II: Assessment of CNT Yarns as Reinforcement for Composite Overwrapped Pressure Vessels

Abstract

Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. This combination of properties offers routes to enable lightweight structural aerospace components. Recent advances in the manufacturing of CNTs have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use, where the superior tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum rings were overwrapped with thermoset/CNT yarn composite and their mechanical properties measured. CNT composite overwrap characteristics such as processing method, CNT/resin ratio, and applied tension during CNT yarn winding were varied to determine their effects on the mechanical performance of the CNT composite overwrapped Al rings (CCOARs). Mechanical properties of the CCOARs were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their mechanical performance relative to bare Al rings. At room temperature, the breaking load of CCOARs with a 10.8% additional weight due to the CNT yarn/thermoset overwrap increased by over 200% compared to the bare Al ring. The quality of the wound CNT composites was also investigated using x-ray computed tomography

    Similar works