research

Partitioning of U, Th and K Between Metal, Sulfide and Silicate, Insights into the Volatile-Content of Mercury

Abstract

During the early stages of the Solar System formation, especially during the T-Tauri phase, the Sun emitted strong solar winds, which are thought to have expelled a portion of the volatile elements from the inner solar system. It is therefore usually believed that the volatile depletion of a planet is correlated with its proximity to the Sun. This trend was supported by the K/Th and K/U ratios of Venus, the Earth, and Mars. Prior to the MESSENGER mission, it was expected that Mercury is the most volatile-depleted planet. However, the Gamma Ray Spectrometer of MESSENGER spacecraft revealed elevated K/U and K/Th ratios for the surface of Mercury, much higher than previous expectations. It is possible that the K/Th and K/U ratios on the surface are not a reliable gauge of the bulk volatile content of Mercury. Mercury is enriched in sulfur and is the most reduced of the terrestrial planets, with oxygen fugacity (fO2) between IW-6.3 and IW-2.6 log units. At these particular compositions, U, Th and K behave differently and can become more siderophile or chalcophile. If significant amounts of U and Th are sequestered in the core, the apparent K/U and K/Th ratios measured on the surface may not represent the volatile budget of the whole planet. An accurate determination of the partitioning of these elements between silicate, metal, and sulfide phases under Mercurian conditions is therefore essential to better constrain Mercury's volatile content and assess planetary formation models

    Similar works